Colisões em duas dimensões

As colisões podem ocorrer em duas dimensões. Por exemplo, bolas de futebol pode mover qualquer maneira em um campo de futebol, não apenas ao longo de uma única linha. bolas de futebol pode acabar indo para o norte ou sul, leste ou oeste, ou uma combinação desses. Então você tem que estar preparado para lidar com colisões em duas dimensões.

pergunta amostra

  1. Na figura, houve um acidente em um restaurante italiano, e dois almôndegas estão colidindo. Assumindo que vo1 = 10,0 m / s, vo2 = 5,0 m / s, vf2 = 6,0 m / s, e as massas das almôndegas são iguais, o que são teta e vf1?

    A resposta correcta é teta = 24 graus e vf1 = 8,2 m / s.

  1. Você não pode presumir que estas almôndegas conservar a energia cinética quando colidem porque as almôndegas provavelmente deformar a partir da colisão. No entanto, o momento é conservada. Na verdade, o momento é conservada em ambos os X e y instruções, o que significa

    pfx = pboi

    e

    pfy = poy

  2. Aqui está o que o impulso original no X sentido foi:

    pfx = pboi= m1vo1 cos 40 graus + m2vo2

  3. Momentum é conservada no X direção, para que você obtenha

    pfx = pboi= m1vo1 cos 40 graus + m2vo2 = m1vf1X + m2vf2 cos 30 graus

  4. O que significa que

    m1vf1X= m1vo1 cos 40 graus + m2vo2 - m2vf2cos 30 graus

  5. Dividido por m1:

    E porque m1 = m2, isso se torna

    vf1X= vo1 cos 40 graus + vo2 - vf2 cos 30 graus

  6. Ligue os números:

  7. Agora, para o y direção. Aqui está o que o impulso original no y direção parece (no sentido descendente):

    pfy=poy = m1vo1 pecado 40 graus

  8. Definir que igual ao impulso final na y direção:

  9. Essa equação se transforma em:

    m1vf1y = m1vo1 pecado 40 graus - m2vf2 pecado 30 graus

  10. Resolver para o componente de velocidade final de almôndegas de 1 y velocidade:

  11. Porque as duas massas são iguais, isso se torna

    vf1y = vo1 pecado 40 graus - vf2 pecado 30 graus

  12. Ligue os números:

  13. Assim:

    vf1X = 7,5 m / s (para a direita)

    vf1y = 3,4 m / s (para baixo)

    Video: COLISÃO BIDIMENSIONAL - DINÂMICA AULA 34 - Prof. Marcelo Boaro

    Isso significa que o ângulo theta é

    E a magnitude do vf1 é

questões práticas

  1. Assume-se que os dois objectos na figura anterior são discos de hóquei de massa igual. Assumindo que vo1 = 15 m / s, vo2 = 7,0 m / s, evf2 = 7,0 m / s, o que são teta e vf1, supondo que o momento é conservada mas a energia cinética não é?

  2. Suponha que os dois objetos na figura a seguir são bolas de tênis de massa igual. Assumindo que vo1= 12 m / s, vo2= 8,0 m / s, evf2 = 6,0 m / s, o que são teta e vf1, supondo que o momento é conservada mas a energia cinética não é?

Seguem-se respostas para as questões práticas:

14 m / s, 26 graus

Video: Colisões bidimensionaisMecânica Dinâmica impulso e quantidade de movimento Física Aula 192

  1. Momentum é conservada nesta colisão. Na verdade, o momento é conservada em ambos os X e y direções, o que significa o seguinte forem verdadeiras:

    Video: Colisões elásticas e inelásticas - Mãozinha em Física 020

    pfx = pboi

    pfy = poy

  2. O impulso original no X direção foi

    pfx =pboi = m1vo1 cos 40 graus + m2vo2

  3. Momentum é conservada no X direcção, então

    pfx= pboi = m1vo1 cos 40 graus + m2vo2 = m1vf1X+ m2vf2 cos 30 graus

  4. resolvendo para m1vf1X da-te:

    m1vf1X = m1vo1 cos 40 graus + m2vo2 - m2vf2 cos 30 graus

  5. Dividido por m1:

    Porque m1 = m2, que a equação se torna



    vf1X = vo1 cos 40 graus + vo2 - vf2cos 30 graus

  6. Ligue os números:

  7. Agora, para o y direção. O impulso original no y direção foi

    pfy = poy = m1vo1 pecado 40 graus

  8. Definir que igual ao impulso final na y direção:

    pfy = poy = m1vo1 pecado 40 graus = m1vf1y + m2vf2 pecado 30 graus

  9. Que se transforma em

    m1vf1y = m1vo1 pecado 40 graus - m2vf2 pecado 30 graus

  10. Resolver para o componente de velocidade final de puck 1s y velocidade:

  11. Porque as duas massas são iguais, a equação se torna

    vf1y = vo1 pecado 40 graus - vf2 pecado 30 graus

  12. Ligue os números:

  13. assim

    vf1X = 12,4 m / s

    vf1y = 6,1 m / s

    Isso significa que o ângulo theta é

    E a magnitude do vf1 é

  • 14 m / s, 12 graus

  • Nesta situação, o momento é conservada em ambos os X e y direções, de modo a seguir forem verdadeiras:

    pfx = pboi

    pfy = poy

  • O impulso original no X direção foi

    pfx =pboi = m1vo1 cos 35 graus + m2vo2

  • Momentum é conservada no X direção, então:

    pfx =pboi = m1vo1 cos 35 graus + m2vo2 = m1vf1X + m2vf2 cos 42 graus

  • Que significa:

    m1vf1X = m1vo1 cos 35 graus + m2vo2 - m2vf2 cos 42 graus

  • Dividido por m1:

    Porque m1 = m2, isso se torna

    vf1X = vo1 cos 35 graus + vo2 - vf2 cos 42 graus

  • Ligue os números:

  • Agora, para o y direção. O impulso original no y direção foi

    pfy = poy = m1vo1 pecado 35 graus

  • Definir que igual ao impulso final na y direção:

    pfy = poy = m1vo1 sin = 35 graus m1vf1y + m2vf2 pecado 42 graus

    resolvendo para m1vf1y da-te:

    m1vf1y = m1vo1 pecado 35 graus - m2vf2 pecado 42 graus

  • Resolver para o componente de velocidade final de puck 1s y velocidade:

  • Porque as duas massas são iguais, a equação se torna

    vf1y = vo1 pecado 35 graus - vf2 pecado 42 graus

  • Ligue os números:

  • Assim:

    vf1X = 13,4 m / s

    vf1y = 2,9 m / s

    Que significa que o ângulo theta é

    E a magnitude do vf1 é


  • Publicações relacionadas