Como fazer generalizações em econometria com valor esperado ou média

Em econometrics, o valor esperado (ou média) de uma variável aleatória proporciona uma medida da tendência central, o que significa que ele fornece uma medição de onde os dados tende a aglomerar.

O valor esperado é a média de uma variável aleatória. Se você tem uma variável aleatória discreta, você pode calcular o valor esperado com a equação

Onde X representa os diferentes valores possíveis para a variável aleatória, e f(X) É a probabilidade de que cada valor irá ocorrer.

Se você tem uma variável aleatória contínua, então você calcular o valor esperado com esta equação:

Video: Valor Esperado, Variância e Desvio Padrão

Embora você pode precisar de reconhecer a diferença entre variáveis ​​aleatórias discretas e contínuas, você provavelmente não vai precisar para realizar cálculos manuais de valor esperado para variáveis ​​aleatórias contínuas. Você deve, no entanto, saber como realizar cálculos manuais para uma variável aleatória discreta.

Suponha que você está examinando variável aleatória X com a distribuição de probabilidades mostrado nas duas primeiras colunas da tabela. Você pode encontrar o valor esperado pela multiplicação de cada valor possível para X por sua probabilidade de ocorrência e, em seguida, adicionar esses valores. Você mostra esta operação na terceira coluna, que lhe dá E(X) = 1,5.

Valor esperado de uma variável aleatória
XProbabilidade (f (x))X * f (X)
00,1250
10,3750,375
20,3750,750
30,1250,375
Total:11.5


Se você está manipulando equações contendo um operador valor esperado, você encontrará os cinco seguintes propriedades úteis:

  • O valor esperado de uma constante é apenas a constante si: E(uma) = uma

  • O valor esperado de duas variáveis ​​aleatórias somados é igual à soma de cada um dos seus valores esperados: E(X + Y) = E(X) + E(Y)

  • O valor esperado de uma variável aleatória multiplicado por uma constante é igual à constante multiplicado pelo valor esperado da variável aleatória: E(machado) = aE(X)

  • E se X e Y são variáveis ​​aleatórias independentes, então o valor esperado de seu produto é igual ao produto de seus valores esperados: E(XY) = E(X)E(Y)

  • E se X e Y são variáveis ​​aleatórias independentes, então o valor esperado de sua relação é igual à proporção de seus valores esperados:

Suponha que você criar uma variável aleatória W definido por W = 5 + 2X + XY, onde a variável aleatória X tem um valor esperado igual a 3, a variável aleatória Y tem um valor esperado igual a 10, e eles são variáveis ​​aleatórias independentes. Usando as propriedades de valor esperado, você calcular o valor esperado W Como

Video: PAPMEM - Julho de 2015 - Probabilidade, valor esperado


Publicações relacionadas