Como distinguir entre funções de trigonometria e relações
Tecnicamente, uma função trigonométrica inversa é suposto ter apenas uma saída para cada entrada. (Uma parte da definição de um inverso é que a função inversa e são um-para-um.) Com qualquer função de um-para-um, cada entrada tem uma saída, e cada saída tem uma entrada.
Para todos os usos práticos do inversas trig, você tem uma maneira de contornar esta regra. Você pode designar se você quer uma resposta ou muitas respostas usando o inverso função ou o inverso relação. A relação é um pouco mais flexível do que uma função- permite que mais do que uma saída para ter a mesma entrada. Para diferenciar entre estas duas entidades, a prática comum é usar letras maiúsculas para a função e minúsculas letras para a relação.
Funções trigonométricas | Relações trigonométricas |
---|---|
SIN-1 x ou x Arcsin | sin-1 x ou arcsin x |
Cos-1 x ou x arccos | COS-1 x ou x arccos |
Tan-1 x ou ARCTAN x | tan-1 x ou x arctan |
Cot-1 x ou x Arccot | Cot-1 x ou x arccot |
Sec-1 x ou x arcsec | seg-1 x ou x arcsec |
CSC-1 x ou x arccsc | CSC-1 x ou x arcscs |
Se você escrever a função
Apenas uma resposta existe, que é chamado de valor principal do inverso. Mas se você escrever
em seguida, o resultado pode ser 30 graus, 150 graus, 390 graus, 510 graus, e assim por diante
Tudo depende da situação - o que você quer no momento. Você quer apenas o valor principal, ou você quer vários valores? Ou você pode querer um monte de valores dentro de uma rotação completa - de 0 a 360 graus.
Quando você quer lotes e lotes de ângulos ou respostas, listando todos eles pode ser tedioso. Na verdade, listando todas as soluções possíveis pode até não ser factível. Ao invés de fazer uma lista, você pode dar um regra, que permite que você defina um ângulo com todos os seus múltiplos-rotação completa - os ângulos com o mesmo lado do terminal.
Deixei n representar qualquer inteiro (..., -3, -2, -1, 0, 1, 2, 3,...). usando o n como um multiplicador, você pode escrever uma longa lista de ângulos de forma mais eficiente. Ao invés de dizer X = 30, 150, 390, 510, 750, 870,. . . , Dividir a lista em dois grupos: X = 30, 390, 750, 1110-. . .- e X = 150, 510, 870, 1230-. . . - e então usar as duas regras que se seguem:
X = 30 + 360n ou X = 150 + 360n
E então, em radianos, em vez de dizer
Aqui está um exemplo mostrando como escrever todos os ângulos que têm um cosseno igual a
As etapas envolvem resolver a relação inversa, não apenas encontrar o valor principal para a função. Resolver para os valores que satisfazem
Listar diversas soluções em ambos os graus e radianos.
Escrever as respostas em graus usando os dois primeiros ângulos mais múltiplos de 360.
Escrever as respostas em radianos usando os dois primeiros ângulos mais múltiplos de 2&PI-.
Escrevendo todos os ângulos possíveis para tangente inversa é um pouco mais fácil do que escrevê-los para sine ou cosseno. A tangente é positivo no primeiro e terceiro quadrantes, que são malicioso-canto de uma outra (metade de uma rotação completa). Devido a este facto, os ângulos que têm os mesmos valores da função são 180 graus de distância, e você pode usar agradáveis múltiplos de 180 graus ou &PI- para citar todas as respostas. Este não é o caso com seno e cosseno, no entanto. Os ângulos com os mesmos valores de função estão em quadrantes que são adjacentes uns aos outros, então você tem que usar duas regras separadas - ambos com múltiplos de 360 graus - para citar todas as respostas.
Veja como escrever todos os ângulos que têm uma tangente igual a
Video: Relações entre funções trigonométricas
Resolver para valores que satisfazem
Liste várias respostas em ambos os graus e radianos.
Escrever as respostas em graus usando múltiplos de 180.
Escrever as respostas em radianos usando múltiplos de &PI-.