Como adicionar vetores juntos
Você&rsquo-re frequentes para adicionar vetores ao resolver problemas de física. Para adicionar dois vetores, você colocá-los cabeça à cauda e, em seguida, encontrar o comprimento ea magnitude do resultado. A ordem em que você adiciona os dois vetores doesn&rsquo-t assunto.
Por exemplo, suponha que você&rsquo-re indo para a grande convenção física e foram informados de que você vai 20 milhas a norte e, em seguida, 20 milhas para leste, até chegar lá. Em que ângulo é o centro de convenções de sua posição atual, e quão longe é?
Você pode escrever estes dois vetores como este (onde a leste é ao longo do positivo X eixo):
(0, 20)
(20, 0)
Neste caso, você precisa adicionar esses dois vetores, e você pode fazer isso apenas adicionando sua X e y componentes separadamente:
Faça as contas, e seu vetor resultante é (20, 20). Você&rsquo-ve acabou de completar uma adição de vetores. Mas a pergunta pede o vetor em termos magnitude / ângulo, não coordenar termos. Então, qual é a magnitude do vector de você para a convenção física? Você pode ver a situação na figura a seguir, onde você tem Xe y e quer encontrar v.
descoberta v isn&rsquo-t tão difícil, porque você pode usar o teorema de Pitágoras:
Conecte os números para obter
Assim, a convenção é 28,3 milhas de distância. E sobre o ângulo teta? Você sabe
teta = tang-1(y/X) = Tan-1(20/20) = 45 graus
E essa&rsquo s-lo - agora você sabe que a convenção é 28,3 milhas de distância em um ângulo de 45 graus.
pergunta amostra
Adicione os dois vetores na figura a seguir. Um tem um valor de 5.0 e ângulo de 45 graus, e o outro tem uma magnitude de 7,0 e o ângulo de 35 graus.
A resposta correta é magnitude 12,0, ângulo de 39 graus.
Resolver os dois vetores em seus componentes. Para o primeiro vector, aplique a equação vX = v cos theta para encontrar o X coordenada. que&rsquo-s 5,0 a 45 graus cos = 3,5.
Aplicar a equação vy = v pecado teta para encontrar o y de coordenadas do primeiro vector. que&rsquo-s 5,0 pecado 45 graus, ou 3,5. Assim, o primeiro vector é (3.5, 3.5) na forma de coordenadas.
Para o segundo vector, aplicar a equação vX = v cos theta para encontrar o X coordenada. que&rsquo-s 7,0 cos 35 graus = 5,7.
Aplicar a equação vy = v pecado teta para encontrar o y coordenada do segundo vector. que&rsquo-s 7,0 pecado 35 graus = 4,0. Assim, o segundo vector é (5.7, 4.0) na forma de coordenadas.
Para adicionar os dois vectores, adicioná-los na forma de coordenadas: (3.5, 3.5) + (5.7, 4.0) = (9,2, 7,5).
Converter (9.2, 7.5) em forma de magnitude / ângulo. Aplique a teta equação = tan-1(y/X) Para encontrar o ângulo, que é tan-1(7.5 / 9.2) = tang-1(0,82) = 39 graus.
Aplicar a equação
para encontrar a magnitude, o que é
Convertendo para dois dígitos significativos dá-lhe 12.
questões práticas
Adicionar um vetor cuja magnitude é 13,0 eo ângulo é de 27 graus para um cuja magnitude é 11,0 eo ângulo é de 45 graus.
Adicionar um vector cuja magnitude é 16,0 e o ângulo é de 56 graus para um cuja magnitude é de 10,0 e o ângulo é de 25 graus.
Adicionar dois vectores: um vector tem uma magnitude 22,0 e ângulo de 19 graus, e o vector de dois tem uma magnitude de 19,0 e um ângulo de 48 graus.
Adicionar um vector cuja magnitude é de 10,0 e ângulo é de 257 graus a um cuja magnitude é de 11,0 e o ângulo é de 105 graus.
Seguem-se respostas para as questões práticas:
Magnitude 23,7, ângulo de 35 graus
Para o primeiro vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 13.0 x cos 27 graus = 11,6.
Use a equação vy = v pecado thetato encontrar o y coordenada do primeiro vetor: 13,0 x pecado 27 graus, ou 5,90. Assim, o primeiro vector é (11,6, 5,90) na forma de coordenadas.
Para o segundo vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 11,0 x cos 45 graus = 7,78.
Use a equação vy = v pecado thetato encontrar o y coordenada do segundo vector: 11,0 x sin 45 graus = 7,78. Assim, o segundo vector é (7,78, 7,78) na forma de coordenadas.
Adicionar os dois vectores na forma de coordenadas: (11,6, 5,90) + (7,78, 7,78) = (19.4, 13.7).
Converter (19.4, 13.7) em forma de magnitude / ângulo. Use o theta equação = tan-1(y/X) Para encontrar o ângulo: tan-1(13,7 / 19,4) = tang-1(0,71) = 35 graus.
Aplicar a equação
para encontrar a magnitude, o que é
Magnitude 25,1, ângulo de 44 graus
Para o primeiro vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 16.0 x cos 56 graus = 8,95.
Use a equação vy = v pecado thetato encontrar o y de coordenadas do primeiro vector: 16,0 x sin 56 graus, ou 13,3. Assim, o primeiro vector é (8,95, 13,3) na forma de coordenadas.
Para o segundo vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 10,0 x cos 25 graus = 9,06.
Use a equação vy = v pecado thetato encontrar o y coordenada do segundo vector: 10,0 x sin 25 graus = 4,23. Assim, o segundo vector é (9,06, 4,23) na forma de coordenadas.
Adicionar os dois vectores na forma de coordenadas: (8,95, 13,3) + (9,06, 4,23) = (18,0, 17,5).
Converter o vector (18.0, 17.5) em forma de magnitude / ângulo. Use o theta equação = tan-1(y/X) Para encontrar o ângulo: tan-1(17,5 / 18,0) = tang-1(0,97) = 44 graus.
Aplicar a equação
para encontrar a magnitude, o que é
Magnitude 39,7, ângulo de 32 graus
Para o primeiro vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 22,0 x cos 19 graus = 20,8.
Use a equação vy = v pecado thetato encontrar o y de coordenadas do primeiro vector: 22,0 x sin 19 graus, ou 7.16. Assim, o primeiro vector é (20,8, 7,16) na forma de coordenadas.
Para o segundo vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 19.0 x cos 48 graus = 12,7.
Use a equação vy = v pecado thetato encontrar o y coordenada do segundo vector: 19,0 x sin 48 graus = 14,1. Assim, o segundo vector é (12.7, 14.1) em forma de coordenadas.
Adicionar os dois vectores na forma de coordenadas: (20,8, 7,16) + (12.7, 14.1) = (33.5, 21.3).
Converter o vector (33.5, 21.3) em forma de magnitude / ângulo. Use o theta equação = tan-1(y/X) Para encontrar o ângulo: tan-1(21,3 / 33,5) = tang-1(0,64) = 32 graus.
Aplicar a equação
para encontrar a magnitude, o que é
Magnitude 5,2, ângulo de 170 graus
1. Para o primeiro vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 10,0 x cos 257 graus = -2.25.
Use a equação vy = v pecado thetato encontrar o y de coordenadas do primeiro vector: 10,0 x sin 257 graus, ou -9,74. Assim, o primeiro vector é (-2,25, -9,74), em forma de coordenadas.
Para o segundo vector, utilizar a equação vX = v cos thetato encontrar o X coordenar: 11,0 x cos 105 graus = -2.85.
Use a equação vy = v pecado thetato encontrar o y coordenada do segundo vector: 11,0 x 105 graus pecado = 10,6. Assim, o segundo vector é (-2,85, 10,6) na forma de coordenadas.
Adicionar os dois vectores na forma de coordenadas: (-2,25, -9,74) + (-2,85, 10,6) = (-5,10, 0,86).
Converter o vetor (-5,10, 0,86) em forma de magnitude / ângulo. Use o theta equação = tan-1(y/X) Para encontrar o ângulo: tan-1(0,86 / -5,10) = tang-1(-0,17) = 170 graus. Porque X é negativa e y é positivo, este vector deve ser no segundo quadrante.
Aplicar a equação
para encontrar a magnitude, o que é