Como racionalizar um radical de um denominador

Uma convenção da matemática é que você não deixe radicais no denominador de uma expressão quando você escrevê-lo na sua forma final. Assim fazemos uma coisa chamada racionalizar o denominador.

Esta convenção faz coleta como termos fáceis, e suas respostas serão verdadeiramente simplificada.

A numerador pode conter um radical, mas o denominador não pode. A expressão final pode parecer mais complicado na sua forma racional, mas isso é o que você tem que fazer às vezes.

Existem duas situações distintas, onde os radicais podem aparecer no denominador de uma fracção: onde expressões contêm um radical no denominador, e onde as expressões conter dois termos no denominador, pelo menos um dos quais é um radical.

Racionalizar com um radical no denominador

Racionalização expressões com um radical no denominador é fácil. Por exemplo, com uma raiz quadrada, você só precisa se livrar da raiz quadrada. Normalmente, a melhor maneira de fazer isso em uma equação é a quadratura ambos os lados. Por exemplo,

No entanto, você não pode cair na armadilha de racionalizar uma fração por quadratura o numerador eo denominador. Por exemplo, em quadratura com a parte superior e inferior de

Em vez disso, siga estes passos:

  1. Multiplique o numerador eo denominador pelo mesmo raiz quadrada.

    O que quer que você multiplica para o fundo de uma fração, você deve multiplicar o top- Desta forma, é realmente como você multiplicado por um e você não alterou a fração. Aqui está o que parece:

  2. Multiplique os topos e multiplicar os fundos e simplificar.

    Para este exemplo, você recebe

O processo de racionalização uma raiz cúbica no denominador é bastante semelhante ao de racionalizar uma raiz quadrada. Para se livrar de uma raiz cúbica no denominador da fração, você deve cubo-lo. Se o denominador é a raiz cúbica para a primeira potência, por exemplo, você multiplicar o numerador eo denominador pela raiz cúbica para a 2ª poder para obter a raiz cúbica para a 3ª potência (no denominador). Levantando uma raiz cúbica para a 3ª potência cancela a raiz - e está feito!

Video: RACIONALIZAÇÃO DE DENOMINADORES - Simplificação de Radicais - Aula 03

Racionalizar quando o denominador é um binómio com pelo menos um radical

É necessário racionalizar o denominador de uma fração quando contém um binômio com um radical. Por exemplo, olhar para as seguintes equações:

Livrar-se do radical nestes denominadores envolve o uso conjugado dos denominadores. UMA conjugado é um binómio formado tomando o oposto do segundo termo da binomial originais. O conjugado de

O conjugado de X + 2 é X - 2- semelhante, o conjugado de

Video: Matemática Básica - Aula 23 - Racionalização de denominadores

Multiplicação de um número por seu conjugado é realmente o método FOLHA disfarçado. Lembre-se de álgebra que FOLHA significa em primeiro lugar, do lado de fora, dentro, e durar.

Os meio dois termos sempre anular-se mutuamente, e os radicais desaparecer. Para este problema, você obtém X2 - 2.



Dê uma olhada em um exemplo típico envolvendo racionalização um denominador usando o conjugado. Em primeiro lugar, simplificar esta expressão:

Para racionalizar esse denominador, você multiplicar a parte superior e inferior pelo conjugado dela, que é

Video: Curso de Matemática Racionalização de denominadores com números irracionais Simplificação de radical

A repartição passo-a-passo quando você faz essa multiplicação é

Aqui está um segundo exemplo: Suponha que você precisa para simplificar o seguinte problema:

Siga esses passos:

  1. Multiplique pelo conjugado.

  2. Multiplicar os numeradores e denominadores.

    Folha de topo e no fundo. (Tricky!) Veja como fazer isso:

  3. Simplificar.

    Tanto o numerador e denominador simplificar primeiro a

    que se torna

    Esta expressão simplifica ainda mais porque o denominador divide em cada termo no numerador, o que lhe dá

Simplificar qualquer radical em sua resposta final - sempre. Por exemplo, para simplificar uma raiz quadrada, encontrar fatores de raiz quadrado perfeito:

Além disso, você pode adicionar e subtrair apenas radicais que são como termos. Isso significa que o número dentro do radical e a índice (Que é o que você diz se é uma raiz quadrada, a raiz cúbica, uma quarta raiz, ou qualquer outro) são os mesmos.


Publicações relacionadas