Sistemas exponenciais
Você pode resolver sistemas de equações exponenciais algebricamente quando as bases dos termos exponenciais são o mesmo número ou quando óbvio
Conteúdo
Quando uma solução algébrica não está disponível, em seguida, um bom programa de calculadora gráfica ou computador pode encontrar a solução - que geralmente inclui lotes de valores decimais e / ou funções logarítmicas.
Este artigo lida com os tipos de problemas que você pode resolver algebricamente (ou simplesmente). É claro, o mais simples é apenas de ligar um número que você tem certeza obras. Mas esse método pode ser demorado se você tem que ligar afastado muito - reservá-lo para a coisa certa.
Exemplos de perguntas
Encontrar as soluções comuns de
e y = 16X+2.
(2, 65536),
Você quer que as bases para corresponder, então primeiro mudar o termo exponencial na segunda equação para uma potência de 2. Torna-se y = (24)X + 2 = 24X + 8. Definir os dois y-valores das duas equações diferentes iguais um ao outro, você começa
Agora defina os dois expoentes iguais uns aos outros: X2 + 6X = 4X + 8. Mover-se todos os termos para a esquerda e factoring, X2 + 2X - 8 = (X + 4) (X - 2) = 0. A solução desta equação quadrática são X = -4 ou X = 2. Substituir o X com -4 de uma das equações originais, e você começa
Substituir X com 2 em qualquer equação, e você começa y = 65536.
Encontrar as soluções comuns de y = 3X + 1 e y = 2X + 3
(0, 3), (-1, 1). A calculadora gráfica iria mostrar-lhe uma curva exponencial crescente da esquerda para a direita e uma linha que aparece para cortar a curva em dois lugares perto do y-eixo. Você teria que fazer zoom de perto para ver os dois pontos de intersecção.
Essas equações foram escolhidos com cuidado para que as respostas são inteiros. Se você avaliar as duas funções por alguns valores, você pode determinar as soluções com computação mínimo.
Deixei X = 0 na primeira equação, e você começa y = 30 + 1 = 3. Let X = 0 na segunda equação, e você começa y = 2 (0) + 3 = 3. Uma solução de! Deixei X = -1 na primeira equação, e você começa y = 3-1 + 1 = 30 = 1. Let X = -1 na segunda equação, e você começa y 2 = (-1) + 3 = -2 + 3 = 1. Estas são as duas únicas soluções.
questões práticas
Localizar a solução comum (s) de y = 3X - 1 e y = 9X.
Localizar a solução comum (s) de y 8 =2 - X e
Localizar a solução comum (s) de y = 2X e y = 1 - x.
Localizar a solução comum (s) de
e y = e.
Seguem-se respostas para as questões práticas:
A resposta é
Conjunto y igual a y para obter 3X - 1 = 9X. Alterar o 9-32 e simplificar: 3X - 1 = (32)X = 32X. Agora que as bases são as mesmas, você pode definir os dois expoentes iguais uns aos outros e resolver para x: x - 1 = 2x-x = -1. substituindo o X com -1 em y = 3X-1, você começa
Video: Função Exponencial: Equações Exponenciais - Parte 1 (Aula 5 de 7)
A resposta é
(-2, 4096).
Video: 1º ano do EM - 9 - função exponencial - 9 - sitemas de equações exponenciais.wmv
Primeiro, substituir a expressão exponencial na primeira equação para y no segundo. Em seguida, alterar a 8 e 4 a potências de 2, e simplificar a equação:
As bases são a mesma, para definir os expoentes iguais um ao outro: 6-3X = 2X2 - 2X torna-se 0 = 2X2 + X - 6. Factoring, você recebe 0 = (2X - 3) (X + 2). Quando
e quando X = -2, y 8 =2 - (- 2) 8 =4 = 4,096.
A resposta é (0, 1).
A primeira equação é uma exponencial que aumenta progressivamente à medida que o X-os valores aumentam. O gráfico da segunda equação é uma linha que cai de forma constante a partir da esquerda para a direita. Eles se cruzam em um único ponto. Com algumas seleções cuidadosas de pontos, você pode determinar rapidamente a sua solução única comum, (0, 1).
substituindo o X com 0 no exponencial dá-lhe y = 20 = 1. E substituindo o X com 0 na linha dá-lhe y = 1-0 = 1.
A resposta é (1, e), (-1, e).
Video: Me Salva! PRC14 - Funções exponenciais
A função exponencial é positivo para todos os valores de X que você entrada. E a linha é horizontal, com uma y-intercepção de (0, e). Se você substituir o X no exponencial com 1, você começa y = e1 ou y = e. A mesma coisa ocorre quando você substituir o X com -1- praça de -1 também é 1, de modo a obter o mesmo y-valor.