Como trabalhar com a transformação z para seis sigma
Há definitivamente vai haver momentos em que você precisa para trabalhar com a transformação Z em Six Sigma. Quantas vezes você se deparar com um processo ou produto característica que tem uma média de 0 e um desvio padrão de 1? Não muito frequente, se alguma vez. Então, onde está a utilidade da distribuição normal padrão e as tabelas de probabilidade normais padrão?
Por exemplo, o que acontece se uma característica do processo você está estudando tem uma média de 10,2 e um desvio padrão de 0,68, e você precisa saber qual é a probabilidade de observar um valor de processo maior do que 12,0? Por que, você usa o transformação Z, claro!
Com este simples transformação de seus dados do processo, a distribuição normal padrão torna-se muito útil. Considere o seguinte transformação matemática que muda seus dados do mundo real - que chamamos X - e escalas-los para o domínio da distribuição normal padrão:
O que você está fazendo matematicamente é encontrar Z, a distância do seu ponto de interesse (X) Para a média do processo do mundo real, e depois calcular quantos desvios padrões do mundo real (s) você pode caber dentro dessa distância. Tente ligar os valores para a situação exemplo:
Descobrir a probabilidade de observar um valor superior a 12,0 na curva é exactamente o mesmo como descobrir a probabilidade de observar um valor maior do que 2,65 na distribuição normal padrão.
Agora que o problema está no domínio normal padrão, você pode usar a tabela de probabilidade normal padrão para descobrir que a probabilidade de ser maior do que 2,65 é 0,004025 (0,40 por cento). Este procedimento é válido para todas as situações em que você está usando um modelo normal para aproximar os seus dados do mundo real.